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Abstract

Embedded machine learning (ML) on low-power devices,
also known as “TinyML,” enables intelligent applications on
accessible hardware and fosters collaboration across disci-
plines to solve real-world problems. Its interdisciplinary and
practical nature makes embedded ML education appealing,
but barriers remain that limit its accessibility, especially in de-
veloping countries. Challenges include limited open-source
software, courseware, models, and datasets that can be used
with globally accessible heterogeneous hardware. Our vision
is that with concerted effort and partnerships between indus-
try and academia, we can overcome such challenges and en-
able embedded ML education to empower developers and
researchers worldwide to build locally relevant Al solutions
on low-cost hardware, increasing diversity and sustainabil-
ity in the field. Towards this aim, we document efforts made
by the TinyML4D community to scale embedded ML educa-
tion globally through open-source curricula and introductory
workshops co-created by international educators. We con-
clude with calls to action to further develop modular and in-
clusive resources and transform embedded ML into a truly
global gateway to embedded Al skills development.

Introduction

Embedded machine learning (ML) has the potential to en-
able intelligent on-device interactions and sustainable com-
puting. This involves the ability to run ML locally on low-
powered devices, often referred to as “TinyML” (Warden
and Situnayake 2019). Potential applications leveraging em-
bedded ML span areas such as healthcare care, climate mon-
itoring, agriculture, and transportation (Prakash et al. 2023;
Tsoukas et al. 2021; Janapa Reddi et al. 2023).

However, adopting embedded ML globally, especially in
developing countries, faces critical challenges. First, embed-
ded ML requires the integration of multidisciplinary soft-
ware and hardware concepts, a significant barrier for stu-
dents and educators from varying backgrounds. The lack
of unified software toolchains and hardware platforms also
creates a bottleneck for developing canonical examples to
teach and test ideas. Finally, interdisciplinary topics like em-
bedded ML face obstacles to widespread faculty adoption
despite the availability of curricula. This highlights the im-
portance of well-coordinated global initiatives that incorpo-
rate accessibility as a fundamental principle to support the
growth of this area, particularly in developing countries.

This paper presents strides that the TinyML for Devel-
oping Countries (TinyML4D) community has made toward
overcoming these obstacles. The TinyML4D community is
an international group of educators, makers, and experts in
embedded systems, machine learning, and embedded ap-
plications, who have come together to promote the use of
TinyML technologies in resource-constrained regions across
the globe. Academics contribute their knowledge of cutting-
edge research and applications. Industry leaders share their
technical skills. Those with on-the-ground experience in de-
veloping countries provide critical insights into local chal-
lenges and opportunities. Together, through grassroots ef-
forts, open-source projects, workshops, and educational ini-
tiatives, TinyML4D aims to empower local communities to
leverage Al and ML effectively, ethically, and sustainably.
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Over the past two years, the community has developed
and released open-source at tinyMLedu.org, embedded ML
courses and examples of canonical embedded ML tasks on
various hardware platforms. To support this courseware, we
recently developed a foundational textbook, Machine Learn-
ing Systems with TinyML (Janapa Reddi et al. 2024). In
addition, we have developed a university network spread
throughout the global south (Plancher and Janapa Reddi
2022) that has taught courses and workshops in multiple lan-
guages (e.g., English, Spanish, Portuguese) in more than a
dozen countries spanning five continents. These efforts have
reached over a thousand students and led to more than 15
peer-reviewed academic publications.

TinyMLA4D’s goal is to catalyze truly global access to em-
bedded ML education, requiring strategic efforts spanning
academia, industry, nonprofits, and governments. To do so,
we are developing a modular open-source embedded ML
curriculum that includes core software and hardware skills
before branching into application domains like health and
agriculture. Central to these efforts will be cross-sector col-
laborations to ensure that our curriculum teaches real-world
skills, that hardware resources are accessible globally, and
that a repository of portable and maintained models and
datasets is developed. We also advocate for increased rep-
utable scholarly venues focused on the topic, such as the
TinyML Research Symposium (tinyML Foundation 2024),
to strengthen incentives for faculty adoption. Finally, as we
aim to broaden access, we must develop outreach efforts and
intentionally develop an inclusive community.

In the following sections, we explain these obstacles, out-
line our initial efforts to address them, and present our rec-
ommendations for further action.

Embedded Machine Learning Background

Embedded ML defines the process of deploying ML mod-
els on low-power devices at the network edge. Also called
“TinyML” (Warden and Situnayake 2019), this approach
combines optimizations from machine learning and embed-
ded systems. By running models locally, embedded ML un-
locks order-of-magnitude improvements in cost, power, con-
nectivity, reliability, and privacy. As such, this technology
is poised to advance the United Nations Sustainable Devel-
opment Goals (SDGs) in areas such as hunger, clean wa-
ter, climate action, and more (Prakash et al. 2023; Zennaro,
Plancher, and Janapa Reddi 2022, 2023). For example, em-
bedded ML unlocks applications in remote scenarios lack-
ing reliable infrastructure, from wildlife monitoring conser-
vation networks to predictive agriculture for local soil mon-
itoring (Dutta and Bharali 2021b,a; Abadade et al. 2023).
And, by processing data internally and never transmitting
raw data, privacy and security are inherently upheld, align-
ing with ethical Al principles (Warden et al. 2023).

Embedded Machine Learning Education

Despite rapid advances, cutting-edge machine learning edu-
cation remains out of reach for millions of aspiring learn-
ers worldwide. For example, healthcare workers in low
and middle-income countries lack access to impactful Al



skills training opportunities (Mollura et al. 2020), with sim-
ilar trends in other fields (Pedro et al. 2019; James 2021).
Prohibitive barriers around connectivity, computational re-
sources, language, and cost prevent countless students and
institutions from transforming their disciplines. This under-
scores the urgent need for alternative channels that radi-
cally democratize access to applied ML education, target-
ing learners of all backgrounds. Embedded ML presents im-
mense opportunities to overcome these challenges and in-
crease the accessibility and impact of ML education glob-
ally. However, numerous challenges prevent its scaled adop-
tion. In this section we present both in detail.

Global Opportunities

By enabling operation with minimal resources, promoting
interdisciplinary collaboration, and facilitating hands-on ap-
plied learning, embedded ML can dramatically widen access
to applied ML at a global scale.

Low Resource Requirements: Embedded ML courses
can leverage low-cost microcontroller hardware in low-
connectivity and low-power environments. This allows im-
pactful ML education to finally be within reach for commu-
nities lacking reliable infrastructure, from rural villages to
underserved urban neighborhoods.

Interdisciplinary Focus: For aspiring ML engineers and
scientists from all fields, embedded ML offers a unique in-
terdisciplinary learning experience, spanning both software
and hardware concepts, as well as integration with adjacent
scientific fields, such as environmental science, conserva-
tion, and healthcare. Learners can develop coveted cross-
stack skill sets by applying algorithms, designing infer-
ence pipelines, optimizing models, and integrating hardware
components such as sensors.

Applied Learning: Embedded ML education centers on
hands-on experiential learning for community impact. Stu-
dents exercise the entire process of identifying local prob-
lems, designing ML solutions, and deploying and measuring
real-world efficacy. For example, a recent project leveraged
TinyML to develop a low-cost mosquito detection system
to reduce the spread of diseases in low-resource communi-
ties (Kimutai and Forster 2023).

Global Challenges

Realizing embedded ML’s full potential requires an honest
confrontation with existing barriers and core challenge ar-
eas, which we detail below. We underscore these challenges
not to discourage progress but to galvanize strategic solu-
tions to unlock embedded ML at scale.

Software and Hardware Fragmentation: The immense
diversity of embedded software frameworks and hardware
devices poses the most immediate barrier to unlocking
embedded ML globally. Each microcontroller and sensor
combination requires tailored models and toolchains opti-
mized for specific instruction sets, memory profiles, and
data pipelines. The large universe of devices from the many
popular manufacturers and technologies (e.g., ARM, RISC-
V, Arduino, Raspberry Pi') combined with the rapid pace

larm.com, riscv.org, arduino.cc, raspberrypi.com
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of updates across software tools existing courses rely upon
(e.g., Edge Impulse Studio, TensorFlow Lite Micro?) multi-
plies course creation and maintenance efforts. This hetero-
geneity, combined with uneven global availability of tools
and devices, has stymied attempts at a global curriculum.
Affordability Barriers: Although embedded ML relies
on lower-cost hardware, acquisition expenses still often
prove prohibitively high for widespread adoption in eco-
nomically disadvantaged regions. Microcontrollers that are
affordably priced, in theory, face substantial markups from
shipping costs, taxes, and import duties in practice, which
can often be more expensive than the device itself.
Localization Roadblocks: The immense diversity of cul-
tures and languages across emerging economies poses ad-
ditional roadblocks for embedded ML globally. Effective
localized education requires adapting materials beyond a
word-for-word translation and customizing them to regional
contexts. For instance, an agriculture use case in Mexico
should reference endemic crops such as agave and climate
conditions in the arid northern regions. This level of local-
ization is resource-intensive yet quintessential for relevance.
Educator Readiness: Embedded ML’s multidisciplinary
potential necessitates cultivating adept educators fluent
across electronics, coding, and ML concepts. However, tra-
ditional domain silos slow this transition. Electrical engi-
neering curricula often lack software depth, and computer
science programs do not often integrate circuit fundamen-
tals. This constrains the supply of qualified educators.
Research Incentives: Without sufficient avenues for pub-
lishing scientific advances or curriculum innovations, criti-
cal insights are lost, and professors also lack external vali-
dation from peers essential for institutional endorsement and
career advancement.

The TinyML4D Network

In 2020, assisted by the International Centre for Theoretical
Physics (ICTP) and Harvard University, the Tiny Machine
Learning Open Education Initiative (TinyMLedu) was es-
tablished as an international consortium comprising schol-
ars and professionals. The primary objective of this initia-
tive is to enhance the availability of educational resources
worldwide in the area of embedded ML, specifically fo-
cusing on the lowest-power applications. As such, to over-
come the challenge of jump-starting the adoption of TinyML
across the Global South, TinyMLedu’s first significant initia-
tive was the launch of the TinyML4D Academic Network in
2021 to catalyze localized course offerings through shared
best practices and resources. Since its launch in 2021 with
20 founding institutional partners from across the Global
South, the TinyML4D network has doubled to include over
40 official members by 2023 (see Figure 1 left). Addition-
ally, several institutions are waiting to join the network, and
a number of supporting institutions from the Global North
are active supporters. In the remainder of this section, we
describe TinyML4D’s early success in addressing the global
challenges outlined above.

%edgeimpulse.com, tensorflow.org/lite/microcontrollers



Figure 1: Left: The 2023 TinyML4D Academic Network. Right: The Participants of the Workshop on Widening Access to
TinyML Network by Establishing Best Practices in Education held at ICTP in Trieste, Italy, in July 2023.

Software and Hardware Fragmentation & Affordabil-
ity Barriers: To help address these structural issues, we pro-
vided all 40 network members with 10 standardized Arduino
hardware kits. These kits pair with the existing TinyML edX
course materials, which we released open-source (TinyML
EdX Team 2021). Since then, additional industrial collabo-
rations with Arduino, Seeed Studio and Edge Impulse® have
enabled academic pricing schemes and the direct distribu-
tion of additional hardware to universities around the globe.

Educator Readiness and Localization Roadblocks: To
increase global educator access to high quality training,
TinyML4D has launched several hands-on virtual, hybrid,
and in-person workshops and courses in multiple languages
(e.g., English, Spanish, Portuguese) across more than a
dozen countries spanning five continents.

Our flagship workshop, SciTinyML: Scientific Use of Ma-
chine Learning on Low-Power Devices, a 5-day hands-on,
virtual workshop for university students and professors ex-
ploring real-world applications of TinyML and their impact
on the developing world, was run globally in 2021 with 216
participants from 48 countries, regionally in 2022 for Africa
(187 from 29), Asia (100 from 8), and Latin America (200
from 17), globally in 2023 (418 from 76), and will be run
globally in 2024. While most workshop participants came
from network member institutions to whom we provided
hardware resources, we also opened the workshops to the
broader community. We developed off-ramps for hands-on
exercises that enabled those without the requisite hardware
to still complete most activities. Excitingly, we have trained
more than 1,000 participants through our workshops, from
students seeking broader skills to professionals upskilling to
even high schoolers tackling technical challenges.

One of our core learnings is that focused regional work-
shops provide an excellent platform for regional coopera-
tion. As such, while we aim to continue to teach online
global workshops to ensure maximal accessibility of these
topics, we are also working to develop more focused re-
gional, in-person workshops. This has led to several one-day
and one-week, in-person and hybrid workshops that have
been run or are scheduled to run in the next few years span-
ning the globe, including in Brazil, Ecuador, Ghana, Macao,
Morocco, Nepal, Ethiopia, Malaysia, Panama, and Saudi

3arduino.cc, seeedstudio.com, edgeimpulse.com
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Arabia. Notably, many current educators in the field were
first participants in our workshops and courses, and many of
these regional efforts were designed specifically to launch
embedded ML activities through a train-the-trainer design.

Research Incentives: We have worked to overcome these
challenges in two ways. First, we have helped develop
reputable venues, including supporting the aforementioned
TinyML Research Symposium (tinyML Foundation 2024),
developing a special issue in IEEE Micro (Reddi and Mur-
mann 2023), and an upcoming special session at the 2024
IEEE World Congress on Computational Intelligence. Sec-
ond, to catalyze early research efforts, we launched a “Show
and Tell” online series, which provides a more informal set-
ting for young researchers and practitioners to present in-
progress projects and gain feedback from the community.
We have found this format to be more inclusive than tradi-
tional academic conferences and received so many contribu-
tions (over 50) for our first four planned events, that we have
continued the series quarterly. A sample of the projects pre-
sented includes: Hand Gesture Recognition for Mute Peo-
ple from Algeria, Monitoring Bees from Kenya, Irrigation
Prediction from Colombia, Non-Invasive Anaemia Detec-
tion from Peru, Shelf Life Estimation of Date Palms from
Saudi Arabia, the development of an Intelligent Personal
Trainer System from Brazil and Cashew Nut Disease Detec-
tion from India. Building on this, researchers in our network
have over 15 peer-reviewed embedded ML publications in-
cluding: (Ooko et al. 2021; Avellenada, Mendez, and Fortino
2022; Altayeb, Zennaro, and Rovai 2022; Bamoumen et al.
2022; Mihigo et al. 2022; Avellaneda, Mendez, and Fortino
2023; Bordin Yamashita and Leite 2023; Kazimierski et al.
2023; Meza-Rodriguez, De La Cruz, and Caceres-DelAguila
2023; Mallick et al. 2023; Silva et al. 2022; Neuman et al.
2022; Atanane et al. 2023).

Foundations of a Modular, Global,
Open-Source Curriculum

TinyMLA4D efforts have been greatly facilitated by the de-
velopment of open-source educational resources, allowing
educators worldwide to easily create new courses without
starting from scratch. While this approach has shown early
success, to increase our global impact further, we organized
an in-person workshop, Edge ML University Program 2023:
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Figure 2: A high-level overview of our curriculum framework revealing our common core and examples of extension modules
for the various tracks designed to support courses of varying lengths, contexts and degree levels.

Workshop on Widening Access to TinyML Network by Estab-
lishing Best Practices in Education, at ICTP in Trieste, Italy,
in July 2023. The workshop was attended by 42 participants
from 25 different countries (see Figure 1 right). In particular,
with the assistance of ICTP, we offered travel grants and ac-
commodation to participants from the Global South. The re-
sulting open-source modular curriculum framework for em-
bedded ML caters to various skill levels, backgrounds, and
areas of interest, with various tracks centered around a com-
mon core (see Figure 2). In the remainder of this section, we
will elaborate on the framework, its different tracks, and our
initial endeavors in creating its open-source materials.

A Common Core with Canonical Hands-on Examples:
Regardless of the course’s specific focus, we identified sev-
eral fundamental modules that should be included in every
embedded ML course. This guarantees that all students ac-
quire the essential skills needed to excel in a career in em-
bedded ML and possess the necessary language and founda-
tional knowledge to pursue advanced courses in the various
fields that support embedded ML. These encompass:

¢ Embedded Systems (E.g, Microcontrollers, Embedded
Programming, Basic Electronics & IoT)

* Machine Learning and Deep Learning Fundamentals
(E.g., Models, Training, Overfitting, Regression vs. Clas-
sification, Neural Networks)

¢ Data-Centric AI (E.g., Data Collection, Pre- and Post-
Processing)

* Responsible AI (E.g., Bias, Privacy, Security)

To help students navigate the entire applied machine
learning journey, we developed three canonical examples of
TinyML: audio keyword spotting (e.g., identifying phrases
like ”OK Google™), multi-class image classification using
image datasets, and motion anomaly detection using iner-
tial measurement units (IMUs). Importantly, these three ex-
amples leverage different sensors, some of which may be
external to the embedded system and require some wiring,
require pre- or post-processing of data, and will be easier or
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harder to train or generalize the resulting model. As such,
we feel that learners can extend the workflow to their future
endeavors through these hands-on examples.

Multiple Tracks of Courses: As embedded ML is an in-
terdisciplinary field and can be taught in a variety of differ-
ent departments, contexts, and environments, our framework
includes three main tracks of focus:

 Software Focus: Equipping students with a foundation in
algorithms, machine learning theory, and software devel-
opment. Ideal for students in fields such as computer sci-
ence, data science, and information technology.

* Hardware Focus: Deepening the student’s understanding
of embedded systems, microcontrollers, and sensor in-
tegration. Ideal for students in fields such as computer,
electrical, and mechanical engineering.

* Domain-Specific Focus: Tailoring embedded ML appli-
cations to specific sectors, such as environmental mon-
itoring or assistive technologies. Applicable to a wide
range of STEM fields that want to leverage embedded
ML as a tool for analysis and application.

Through these pathways, embedded ML can be integrated
into various departments and fields, lowering barriers-to-
entry for both students and educators. Finally, as the field
progresses, this method should streamline the process of
maintaining the curriculum by allowing for the easy updat-
ing and substitution of individual modules within courses.

Courses of Different Lengths: Our curriculum accom-
modates courses of varying lengths, categorized into three
groups to meet the diverse needs and backgrounds of learn-
ers and educators. Although the length of each category
varies significantly, each addresses the core topics and then
explores specific additional modules, time permitting.

First, there is a comprehensive semester-long course de-
signed for integration into computer science or engineering
degree programs, with the goal of establishing a solid un-
derstanding of both machine learning and embedded sys-
tems. We have already made significant strides by aggregat-



ing the courseware of semester-long courses from Harvard,
MIT, UPenn, and UNIFEI in Brazil.

Second, the micro-credential course, modeled after offer-
ings on popular online MOOC platforms, caters to a broad
audience, including self-directed adult learners, undergrad-
uates, and graduates. These courses offer flexibility and ac-
cessibility, while still providing technical insights and prac-
tical experiences. We have already provided course materi-
als for MOOCs from Harvard on edX and Edge Impulse on
Coursera*. We also developed an open-source textbook to
pair with this courseware, Machine Learning Systems with
TinyML (Janapa Reddi et al. 2024).

Lastly, the short course, lasting 3 to 5 days, is designed
to introduce individuals with or without computer science
or engineering backgrounds to the embedded ML environ-
ment. This format is particularly useful for early exposure
and basic comprehension. Importantly, all courses include a
hands-on component or live demonstration. Several of these
can be found on the tinyMLedu.org website.

Finally, to guarantee accessibility and user-friendliness,
we are utilizing a decentralized hosting strategy with cen-
tralized coordination. In particular, our tinyMLedu.org web-
site serves as the centralized front-end linking to materi-
als developed globally and hosted on dependable and well-
known cloud platforms, which ultimately store the content.

Calls to Action

Building on our early results and to propel the field of em-
bedded ML forward globally, it is essential to take action
on multiple fronts. The following calls to action address key
areas that require the attention of researchers, educators, in-
dustry professionals, policymakers, and the general public.

Assessing Our Educational Programs: Continuous as-
sessment and improvement of our educational programs is
paramount for long term success. As such, to develop an ev-
idence base for what works globally, we must build unified
pre- and post-course surveys into our framework. Similarly,
we need to establish shared standards for content quality,
relevance, and pedagogical effectiveness, while allowing for
multiple interpretations and implementations. This should
include a transparent peer review system, mechanisms for
continuous updates, and a concept guide in the style of the
NSF/IEEE-TCPP Curriculum Initiative on Parallel and Dis-
tributed Computing (Prasad et al. 2011).

Maintaining Open-Source Software and Courseware:
The challenges of heterogeneity in hardware and software
tools within the embedded ML ecosystem mean that even
once our modular curriculum is fully developed, it will
take significant effort to maintain. We call on industry part-
ners to play a pivotal role in maintaining and supporting
open-source software workflows. In particular, for our set
of canonical hands-on examples, we ask hardware vendors
to ensure that these few examples can work for a five-year
long-term support commitment.’ To encourage such an ef-
fort, we advocate for the development of a certification that
notes if a product is “Embedded ML Ready” and comes with

4edx.org/learn/tinyml, coursera.org/instructor/shawnhymel
>This term follows the Ubuntu long-term support model.
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the promise of long-term support. Similarly, we ask that all
academics who help develop and share their course mate-
rials provide some long-term support. To encourage those
efforts, we also want to develop a certification process for
“Gold Star Courses,” with a guaranteed maintenance term.

Embedded ML Model and Data Zoo: Building on the
foundation of maintained open-source software and course-
ware, and the continued growth and prominence of data-
centric AI (Mazumder et al. 2022; Zha et al. 2023), there
is an imperative need to create an “embedded ML model
and data zoo.” This will encompass benchmark datasets and
models similar to ImageNet for computer vision (Deng et al.
2009). Building on early successes like the Visual Wake
Words Dataset (Chowdhery et al. 2019), such a resource will
catalyze the rapid prototyping and deployment of embedded
ML systems, enabling benchmarks for comparison across
the field. Collaborating with initiatives like MLPerf (Matt-
son et al. 2020), who already produced a TinyML bench-
mark (Banbury et al. 2021), could accelerate such efforts. To
further enhance accessibility and sharing, data sets can be
made available through platforms such as Mendeley Data,
Huggingface, Zenode (CERN), OSF, OpenML, or GitHub®.
It is also important to tag datasets and models with key meta-
data. For example, knowing the mounting location of a sen-
sor and having both raw and cleaned data would enable re-
searchers to develop algorithms that anticipate future chal-
lenges with real-world deployments.

Improving Accessibility of Hardware: Efforts should be
made to make hardware accessible at a low cost after consid-
ering shipping, taxes, and import duties. Collaboration be-
tween regional leaders and organizations can help overcome
regional purchasing challenges. Exploring industry partner-
ships can help secure hardware for courses while enabling
manufacturers to promote their hardware and recruit future
talent. Governments can also provide support and enable
their populations to gain skills in emerging technologies. Si-
multaneously, simulators for code verification and execution
can help educators develop experiments and courses even
without hardware resources. Early efforts towards this goal,
such as Renode and QEMU’, can already support embed-
ded ML applications (Iodice 2022). Hardware testbeds could
also be developed based on similar successful efforts for
wireless sensor networks (Werner-Allen, Swieskowski, and
Welsh 2005; Doddavenkatappa, Chan, and Ananda 2012)).

Growing a Research Community: To sustain and ex-
pand our progress, it is imperative to foster a diverse and
vibrant research community with opportunities for collab-
oration and recognition. In particular, we call upon aca-
demic leaders to establish a high profile conference or jour-
nal specifically tailored to embedded ML'’s interdisciplinary
nature. The addition of online competitions can also help.
We also advocate for industry to provide direct financial sup-
port and grant opportunities. These efforts will help educa-
tors gain the resources and institutional support needed to
teach embedded ML and develop open-source courseware.

Sdata.mendeley.com, huggingface.co, osf.io,
openml.org, github.com

"renode.io, gemu.org

zenodo.org,



Finally, while early research has shown the potential for
embedded ML to support efforts toward responsible Al prac-
tices (Warden et al. 2023; Stewart et al. 2023), additional
work must be done to expand transparency, improve explain-
ability, and reduce the bias of real-world embedded ML sys-
tems (e.g., by building on recent efforts in large-scale ma-
chine learning (Mitchell et al. 2019; Roscher et al. 2020;
Mehrabi et al. 2021; Selbst et al. 2019)).

Outreach and Diversity Efforts: While our global de-
sign already reaches a relatively diverse audience geograph-
ically and socioeconomically, reaching out to audiences be-
yond the confines of higher education is also crucial. For
example, KU Leuven’s InnovationLab® developed a “teach
the teacher” partnership with local primary and secondary
schools to enable hands-on engineering experiences that in-
tegrate directly into existing curricula. Furthermore, initia-
tives such as webinars, public lectures, podcasts, interac-
tive demonstrations, citizen science projects, and exhibitions
can showcase real-world embedded ML applications, mak-
ing the technology tangible and relatable. Importantly, while
conducting these outreach efforts, a particular focus should
also be made to foster diversity, inclusion, and belonging
within the embedded ML community. As such, we must
develop inviting online communities and application-driven
content that addresses interdisciplinary global challenges.

Conclusion and Future Work

Embedded ML shows immense promise in enabling
global Al education through accessible hands-on learn-
ing. Our initiatives establishing open-source courseware, the
TinyMLA4D global university network, and modular curricu-
lum lay the groundwork for an inclusive TinyML commu-
nity and have early global momentum. However, realizing
our full vision requires coordinated next-generation efforts
between stakeholders, maintaining software infrastructure,
aligning industry-academia content, and providing reputable
publication venues as rewards. Through such collaborative
efforts, we aim to construct an embedded ML ecosystem
where learners of all backgrounds, geographies, and genera-
tions can shape our emerging Al landscape.
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