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Abstract—In today’s digital age, access to the Internet is
essential, yet a significant digital divide exists, particularly in
rural areas of developing nations. This paper presents a Delay
Tolerant Networking (DTN) framework that utilizes informal
public transportation systems, such as minibus taxis, as mobile
data mules to enhance connectivity in these underserved regions.
We develop a probabilistic model to capture the randomness in
vehicle mobility, including travel times and contact durations
at bus stops. Key performance metrics are analyzed, including
average data transmission rate and Peak Age of Information
(PAoI), to assess the effectiveness of the proposed system. An
analytical approximation for the Mean PAoI (MPAoI) is derived
and validated through simulations. Case studies from real-world
datasets in Nouakchott, Accra, and Addis Ababa demonstrate
the practical applicability and scalability of our framework. The
findings indicate that leveraging existing transportation networks
can significantly bridge the digital divide by providing reliable
internet-like connectivity to remote areas.

Index Terms—Delay Tolerant Networking (DTN), Informal
public transport, and Digital divide.

I. INTRODUCTION

A. MOTIVATION

In today’s digital age, Internet access is widely recognized as
essential for economic and social progress. The United Nations
(UN) emphasizes this importance in their Common Agenda,
declaring universal Internet access by 2030 as a fundamental
human right [1]. Despite rapid advancements in connectivity
solutions, a significant disparity in access persists between
developing and developed nations. According to the latest re-
ports from the International Telecommunication Union (ITU),
approximately 2.9 billion people, which is nearly one-third of
the global population, still lack Internet access, predominantly
in rural areas and developing regions [2]. This gap contributes
to a persistent digital divide, placing those without access
to the Internet and other information and communication
technologies (ICTs) at a marked socio-economic disadvantage.
Although various efforts have been made to improve rural
connectivity through traditional backhaul infrastructure, these
solutions often face significant challenges [3]. In many cases,
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the geographic and economic conditions of rural areas make
it difficult to deploy and maintain such infrastructure, further
widening the access gap [3].

Delay Tolerant Networking (DTN) has emerged as a viable
solution for extending connectivity to rural and underserved
areas [4]. Operating on a store-carry-forward paradigm, DTN
allows data to be stored locally on mobile devices, trans-
ported as devices move, and forwarded when they enter the
communication range of another device. This type of DTNs,
known as mule-based DTNs, enables direct device-to-device
communication using local radio signals, which reduces the
need for fixed network infrastructure. DTN is particularly
suited for resource-constrained environments, offering a cost-
effective backhaul-like connectivity approach to bridging the
digital divide where traditional connectivity infrastructure may
be impractical or costly [5]. This communication paradigm
makes use of existing transportation systems, such as buses
and trucks, to physically carry data between network points.
These mobile carriers serve as the primary mechanism for data
movement in the absence of continuous network coverage.

Informal public transportation systems offer a promising
opportunity for supporting DTNs in developing regions. One
such system is the use of minibus taxis, which play a central
role in the daily transportation of people in many develop-
ing countries. For example, in South Africa, medium-sized
minibus taxis dominate the public transport sector, with over
60 % of the population relying on them for mobility [6]. These
taxis transport approximately 14 million passengers daily,
proving their significance within the transportation network.
When used as mobile data mules, these vehicles can carry
information between rural areas that lack Internet access
and urban centres that are connected to the Internet. Such
integration of mobility and data transfer offers a practical and
cost-effective way to enhance connectivity in regions where
traditional infrastructure is limited or absent.

B. RELATED WORKS

DTN was originally developed by NASA for interplanetary
satellite communication; however, it later showed significant
potential in extending connectivity to rural regions where tra-
ditional communication infrastructure is unavailable or costly.
DTN enables intermittent and opportunistic access to the In-
ternet through a store, carry, and forward mechanism, allowing
data to be transferred whenever communication opportunities
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arise. Several studies have investigated the application of DTN
in rural connectivity projects across different parts of the
world. In [7], authors proposed the use of public transport
buses to carry data and establish intermittent links between
remote villages in Bangladesh, effectively overcoming infras-
tructural barriers. Similarly, a study in South Africa [8] exam-
ined the use of taxis and other transport modes to facilitate
data transfer between rural communities. Additional studies
have emphasized DTNs flexibility in addressing geographic
constraints. For example, the authors of [9] explored DTN
deployments in remote mountainous areas of Sweden, where
helicopters were used as mobile data mules. In another case,
the authors of [10] demonstrated DTNs adaptability through
the use of Android-based devices to support communication
in resource-constrained environments. Taken together, these
studies demonstrate that DTN can adapt to a wide range
of rural environments and transportation contexts, offering a
flexible and cost-effective solution for addressing connectivity
challenges in underserved areas.

While previous studies have demonstrated the feasibility
of DTN systems for rural connectivity using mobile data
mules such as buses, ferries, and helicopters [7], [8], [9],
[10], [11], [12], [13], many of these works remain primarily
empirical or descriptive, offering limited formal analysis of
system performance. In particular, the integration of informal
public transport systems, such as the ones found in many
cities in developing countries, into DTN framework is still
underexplored, especially with respect to quantifying key
communication performance metrics. This paper addresses
these gaps by introducing a probabilistic modeling framework
based on renewal theory to capture the stochastic movement
patterns of informal transport systems and incorporate them
in the DTN design. Analytical expressions are derived for
performance metrics such as the Mean Peak Age of Infor-
mation (MPAoI), and cost considerations are incorporated to
determine the minimum number of DTN data mules required
to meet performance targets. The framework is validated using
real-world mobility datasets from cities including Nouakchott,
Accra, and Addis Ababa, reflecting the irregularities in in-
formal transport behavior. This integrated approach of formal
modeling, analytical evaluation, and validation with real-world
mobility traces distinguishes this work from prior efforts and
provides a more systematic basis for deploying mule-based
DTNs in rural environments.

C. ARTICLE OUTLINE

Motivated by the pressing need to bridge the digital divide,
this work investigates the performance of DTN frameworks
that leverage informal public transportation systems as data
mules. We propose a general methodology to evaluate DTN
performance from a communication perspective, with partic-
ular focus on optimizing the number of DTN data mules
required to meet communication performance targets. The
primary research question explored in this article concerns
the effectiveness of such systems in delivering Internet-like
connectivity to underserved or remote regions. Specifically,
we study scenarios where two disconnected areas, an Internet-

connected urban center and a rural location with limited or no
connectivity, are linked through the movement of DTN data
mules. Our aim is to assess the quality of this connection by
analyzing data flow and evaluating performance metrics.

To this end, we develop a probabilistic model based on
renewal theory to describe the mobility behavior of informal
transport systems, including transportation routes, travel dura-
tions and waiting times. We also incorporate cost and quality-
of-service (QoS) constraints into the design process. Particu-
larly, we consider the MPAoI and average data transmission
rate as key QoS metrics, drawing parallels to optimization
strategies used in traditional cellular networks, but adapted to
the mobile nature of DTN nodes. The framework is validated
through real-world mobility datasets from cities including
Nouakchott, Accra, and Addis Ababa, capturing the irregular
dynamics of informal transport. Our goal is to provide a
scalable framework that provides indicative metrics for the
predicted communication performance that such systems can
achieve, and hence offering insights into their practical fea-
sibility and design optimization in rural contexts. The main
contributions of this article are summarized as follows:

• We introduce a comprehensive framework to model the
mobility patterns of informal transport systems, including
travel durations and waiting times at bus stops. This
framework is based on renewal theory to characterize data
mule movement between rural and urban regions.

• We analyze key performance metrics such as the mean
transmitted data size, average data transmission rate, and
Mean Peak Age of Information (MPAoI). Although exact
analytical expressions for MPAoI is complex, we provide
an analytical approximation of the MPAoI based on the
superposition of renewal processes at equilibrium, and
validate the approximation via simulations.

• We validate the proposed framework using real-world
mobility datasets from informal public transport systems
in cities including Nouakchott, Accra, and Addis Ababa.
These case studies demonstrate the practical applicability
and scalability of our framework.

D. NOTATION SUMMARY

To facilitate understanding and maintain consistency through-
out this manuscript, Table I provides a comprehensive sum-
mary of all key notations, symbols, and variables used in our
analysis. The notations are organized into several categories:
system parameters that define the network configuration, ran-
dom variables that characterize the stochastic behavior of the
transport system, performance metrics that quantify system
effectiveness, and derived quantities used in the analytical
framework.

II. SYSTEM MODEL

A. OVERVIEW

In this section, we present a model for public transportation
systems that connect two distant regions, an urban city and
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TABLE I: Summary of Notations

Notation Description

System Parameters
N Number of vehicles serving the route between city and village
n Number of vehicles equipped with DTN modules (n ≤ N )
Rlink Wireless link data rate between a DTN-equipped vehicle and a

fixed DTN gateway during contact time (Mbps)
R Effective DTN uplink/downlink data transmission rate (Mbps)
c1 Minimum contact time at bus stops (minutes)
c2 Maximum contact time at bus stops (minutes)
Tmin Minimum travel time between regions A and B (minutes)
C Cost of a single DTN node placed on vehicles (USD)
Cgateway Cost of a fixed DTN gateway (USD)

Random Variables
Tc,A Contact time at region A (urban gateway), Tc,A ∼ Unif(c1, c2)
Tc,B Contact time at region B (rural gateway), Tc,B ∼ Unif(c1, c2)
Td Random delay during vehicle’s travel, Td ∼ Exp(1/T d))

T d Average travel time delay, E[Td]
TAB Travel time from region A to region B, TAB = Tmin + Td

TBA Travel time from region B to region A, TBA = Tmin + Td

Tv,i Inter-arrival time of the v-th vehicle for its i-th round trip
Ts Inter-arrival time of the superimposed process (all n vehicles)
mv Data size transmitted or received per vehicle arrival (Mbits)

Performance Metrics
AoI Age of Information
MAoI Mean Age of Information
PAoI Peak Age of Information
MPAoI Mean Peak Age of Information
E[R] Mean data transmission rate of the DTN system (Mbps)
E[mv ] Mean transmitted data size per vehicle arrival (Mbits)
λs Arrival rate of the superimposed process (vehicles per minute)

Derived Quantities
Nv(t) Renewal process for the v-th vehicle
Ns(t) Superimposed renewal process for all n DTN-equipped vehicles
E[Tv,i] Mean inter-arrival time of a single vehicle (mean round-trip time)
E[Ts] Mean inter-arrival time of the superimposed process
FX(x) Cumulative distribution function (CDF)
fX(x) Probability density function (PDF)
tl Generation time of the l-th update at the source
t′l Reception time of the l-th update at the monitor
u(t) Timestamp of the most recent update received by time t
µ Mean round-trip time, E[Tc,A + TAB + Tc,B + TBA]

a rural village. Broadly, public transport systems can be clas-
sified into two categories. The first includes formal transport
systems that operate on fixed schedules and predefined routes,
often regulated by governmental or municipal authorities.
These are commonly found in urban areas. The second cate-
gory comprises informal systems, which are typically unregu-
lated and lack predefined schedules or fixed routes. Examples
include minibuses, shared taxis, and similar modes of transport
frequently used in developing countries [14]. In informal
transport systems, vehicles often wait at central stops until
a sufficient number of passengers with similar destinations
are gathered before departing. The departure times and the
routes taken are not fixed in advance, and both the waiting
time at stops and the travel time between regions are inher-
ently random. This work focuses on such systems, modeling
their stochastic behavior through a probabilistic framework.
The framework captures the key sources of randomness and
provides analytical tools to support the design and deployment

of DTNs using these transportation systems as data mules.

B. CONSIDERED SCENARIO

We consider a DTN system that operates between two geo-
graphically separated regions: an urban area with Internet con-
nectivity and cloud services, and a rural village with limited
or no Internet infrastructure. Fig. 1 illustrates the architecture
we consider in this work. In the rural region, various DTN-
based services operate under the assumption of non-real-time
communication, such as asynchronous email, web caching,
digital learning platforms [5], and IoT-based environmental or
agricultural monitoring. These services rely on intermittent but
reliable data delivery, making DTN a suitable solution in such
contexts. Connectivity between the two regions is facilitated
by informal public transportation vehicles, such as minibuses
or shared taxis, which travel between a designated bus stop in
the city and another in the rural area. Among the total fleet of
N vehicles serving this route, only n (n ≤ N ) are equipped
with DTN communication modules. Each region’s main bus
stop is equipped with a DTN gateway that establishes wireless
links (e.g., via Wi-Fi) with arriving vehicles.

For simplicity, these gateways, referred to as node A in the
urban region (region A) and node B in the rural region (region
B), serve as fixed communication endpoints for data transfer.
As DTN-equipped vehicles move between regions A and B,
they carry data in both directions: from the Internet (via node
A) to rural users (via node B), and from rural users back to
Internet-based services. These vehicles thus function as mobile
data mules, bridging the connectivity gap between urban and
rural regions. The DTN architecture described in this work
is particularly relevant for regions where informal public
transportation systems dominate intercity mobility, which are
prevalent in many cities in developing countries [14].

Fig. 1: The considered DTN scenario, where DTN modules
carried via informal public transport means are used to connect
the city and rural networks.

For simplicity and analytical tractability, the proposed
model considers communication only between DTN-equipped
vehicles and the fixed DTN gateways (nodes A and B), exclud-
ing vehicle-to-vehicle (V2V) communication. In the context of
informal rural-urban transport, such vehicles typically travel
long distances on disjoint schedules and with random corri-
dors, making in-transit V2V encounters infrequent. Moreover,
informal systems often operate sequentially, with vehicles
departing only after a sufficient number of passengers are
on board, further reducing the likelihood of overlap between
DTN-equipped vehicles during transit. It should be noted
that the discussed DTN framework targets applications that
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do not require instant data delivery. Some IoT scenarios
fit this category, including environmental monitoring, sensor
data collection in agriculture, and wildlife tracking, where
measurements are stored and forwarded when possible [15],
[16], [17]. However, the framework is not intended for IoT
services that need continuous or low-latency connections, such
as critical emergency alerts, industrial automation, or real-time
health monitoring. Such services must rely on alternative con-
nectivity solutions that guarantee immediate and continuous
data transmission.

C. DTN DATA MULE MODEL

In this part, we develop a probabilistic model that describes
the DTN data mules movement traversing between the two
regions. We assume that these vehicles are mainly informal
public transport providing shared transportation for multiple
passengers, such as medium-sized minibus taxis and vans
that dominate the public transport sector in many developing
countries [6]. These vehicles operate without fixed, predefined
intermediate stops or schedules but with roughly fixed service
corridors that start/end at a main bus stop at each region [14].
Therefore, the time it takes for each vehicle to travel between
the two regions and the waiting time at the main bus stop
are both random. In addition, a key metric of interest in
our framework is the time interval between successive DTN-
equipped vehicles’ arrivals at each bus stop, as it directly
impacts the data transmission rate and the effectiveness of
the DTN system. The following subsections provide detailed
modeling of these timing distributions and explain how they
influence communication performance.

1) Contact Time: A vehicle arrives at the main bus stop
and waits for passengers to board or alight from the ve-
hicle. The waiting time for the vehicles varies depending
on the time of the day and the availability of customers to
travel to the intended destination. During this time, a DTN-
equipped vehicle establishes a wireless connection with the
DTN gateway located at the bus stop and starts to send/receive
data packages with data rate Rlink (in Mbps, representing the
wireless link data rate between DTN-equipped vehicles and
DTN gateways). We call this period the contact time between
the vehicles and DTN gateway, and it determines the data
size sent/received for each time the vehicles stop at the bus
stop. In practice, the waiting time is random in nature and
could be few minutes or tens of minutes; hence, we model the
contact time, denoted as Tc, for each vehicle stopping near
DTN gateways at each region (nodes A and B, see Fig 1) as
uniform distribution Tc,{A,B} ∼ Unif(c1, c2), where c1 and
c2 are the minimum and maximum observed waiting time for
drivers at the bus stops, respectively. This typically captures
the randomness of the time needed for passengers to board and
alight from the vehicle and/or the drivers to take a break after
each trip. In addition, the uniform distribution also assumes
no inherent bias within the range, which reflects the variability
caused by operational factors, and provides a straightforward
and effective representation of the randomness observed in
practice. We note that more sophisticated distributions could
potentially offer greater accuracy in specific contexts, particu-

larly in highly dense or disrupted environments. However, such
refinements would require extensive empirical data collection
on actual waiting time patterns. Importantly, our analytical
framework focuses on the expected value of system delays,
where the mean contact time plays a dominant role. This focus
ensures that our key conclusions remain robust regardless
of whether the underlying distribution is uniform or follows
alternative forms with comparable mean values.

2) Travel Time: Once passengers board or alight from
the vehicle, it starts to travel to the other region. In prac-
tice, during the journey, the drivers often adjust their route
and stop at intermediate locations dynamically, for example,
to find more customers, circumvent traffic, or avoid police
checkpoints [14]. Therefore, we model the time to travel from
region A to B (and from B to A), denoted as T{AB,BA}, to
be a combination of two parts; Tmin, which is the minimum
time needed for a vehicle to travel between the city and
village (following an optimum path, and without considering
any delay sources), and Td, a delay that captures the drivers’
intermediate stopping, traffic encountered during its journey,
and any other sources of random delay. Tmin is constant and
calculated based on the distance and optimum route between
the city and the village, while Td is modeled as exponentially
distributed random variable Td ∼ Exp(1/T d), where T d

is the average delay of the travel time of the vehicle. We
model the delay Td as an exponentially distributed random
variable because the exponential distribution is commonly
used to capture random delays, reflecting the dynamic and
unpredictable nature of informal transport systems, where
delays arise due to independent factors such as intermediate
stops, traffic, or detours. The exponential model also pro-
vides mathematical simplicity, allowing analytical traceability
while investigating communication metrics for DTNs. Hence,
T{AB,BA} = Tmin + Td, which means that T{AB,BA} is a
shifted-exponentially distributed random variable with mean
delay Tmin + T d.

3) Inter-arrival time of vehicles: In our scenario, we
consider N vehicles serving passengers between the city and
village, of which n vehicles (n ≤ N ) are equipped with
DTN modules to deliver data packages. These vehicles traverse
between the two regions throughout the day, with round-trip
times modeled as described in Sections II-C1 and II-C2. One
key metric in this analysis is the inter-arrival time of vehicles at
each region, which directly impacts data transmission rates and
communication metrics. Here, we define the inter-arrival time
of a single vehicle as the time between two successive arrivals
of the same DTN-equipped vehicle at a region (e.g., region
A). This is equivalent to the vehicle’s full round-trip time,
encompassing its contact time at region A, travel to region B,
contact time at region B, and return to region A. To model
this, we represent each vehicle movement (the v-th vehicle)
as a renewal process, denoted as Nv(t), with independent
and identically distributed inter-arrival times. The i-th inter-
arrival time of the v-th vehicle is donated by Tv,i. For a
vehicle starting at any region (region A or B), the time to
complete successive round trips follows the renewal pattern
Tv,1, Tv,2, . . ., with each renewal time accounting for both
travel and waiting durations. In our considered scenario, the
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inter-arrival time Tv,i is given as the time needed for the
vehicle to complete a round-trip starting from one of the
regions, Formally, we define the inter-arrival time of a DTN-
equipped vehicle v as the total time taken to complete one
full round-trip starting at node A (urban), travelling to node
B (rural), and returning to node A. This includes the contact
time at node A (Tc,A), the travel time from A to B (TAB), the
contact time at node B (Tc,B), and the return travel time from
B to A (TBA). Hence, the i-th inter-arrival time for the v-th
DTN-equipped vehicle is expressed as:

Tv,i = Tc,A + TAB + Tc,B + TBA (1)

where each term in the right-hand side of Equation (1)
corresponds to the v-th vehicle during its i-th round trip,
and the subscripts v and i are omitted for notational sim-
plicity because the random variables (Tc,A, TAB , Tc,B , TBA)
are assumed independent and identically distributed (i.i.d.)
across vehicles and trips, with the understanding that each
is implicitly indexed by (v, i) in analysis and simulation.
To evaluate the aggregate performance of the system with
n DTN-equipped vehicles, we extend the above analysis to
include all n vehicles. Suppose that the travel time of each
vehicle traversing between the two regions is independent of
the others. We model the arrival time of n vehicles at region A
(or B) as a superposition of n independent renewal processes,
denoted by Ns(t) and given as follows:

Ns(t) = N1(t) +N2(t) + · · ·+Nn(t) (2)

Ns(t) in Equation (2) describes the superimposed arrival
process from n vehicles as seen at each region, i.e., the
i-th inter-arrival time of the superimposed process Ns(t),
denoted as Ts,i, represents the time elapsed between the
arrival of any consecutive vehicles at both regions. In general,
the superposition of independent renewal processes is not a
renewal process, and finding the renewal time (inter-arrival
time of aggregated vehicles) distribution of the superimposed
process is not straightforward [18]. Nevertheless, we focus
on limiting distribution for intervals remote from the time
origin, or equivalently, we look at the component process as an
equilibrium renewal process. In other words, we assume that
the vehicles have been running long before it is first observed.
The assumption of observing the process at equilibrium is
reasonable because vehicles are typically in continuous op-
eration over the day, and the DTN is likely to have reached a
steady state by the time it is first observed. Evidently, assuming
the superimposed process is observed at equilibrium allows
for direct computation of the mean inter-arrival time of the
superimposed process. To clarify, suppose that the mean inter-
arrival time of each of the individual processes is given by
E[Tv,i] = E[Tv] = µ (the i subscript was omitted as all
inter-arrival times are assumed to be identically distributed
across vehicles and round trips). It was shown in [18] that, at
equilibrium, the mean inter-arrival time of the superimposed
process in Equation (2), is given by:

E[Ts,i] = E[Ts] =
E[Tv]

n
=

µ

n
, (3)

with arrival rate, λs, of the superimposed process is:

λs =
1

E[Ts]
=

n

µ
(4)

This analytical relationship shown in Equation (4) not only
confirms known intuitions but also enables a quantitative
design framework for determining the minimum number of
DTN-equipped vehicles, as to be discussed in the following
section, required to meet specific communication performance
goals, such as average data transmission rates and age of
information thresholds, which is particularly useful to evaluate
the effectiveness of DTNs. In addition, the distribution of the
inter-arrival time of the superimposed process in Equation (2),
denoted by g(x), can be expressed as [18]:

g(x) = − d

dx

[
F(x)

(∫ ∞

x

F(u)

µ
du

)n−1
]
, (5)

where F(x) is the survival function of the inter-arrival time
of the individual renewal process. In the above model, we
assume that the DTN-equipped vehicles operate independently,
and their inter-arrival times are drawn from independent and
identically distributed renewal processes. This assumption
simplifies the analysis and allows the derivation of closed-
form expressions for key performance metrics. However, this
assumption may not be applicable if the vehicles pass by
congested urban environments or shared road segments, as
vehicle delays may exhibit correlation due to common in-
fluences such as traffic jams, accidents, weather conditions,
or scheduled events. Such dependencies could lead to bursty
arrivals or prolonged service gaps, impacting the effectiveness
of the DTN system. It is worth noting that modeling DTN-
equipped vehicles as travelling independently is a reasonable
approximation, particularly when the waiting times at bus
stops are sufficiently long. In such cases, the variability
introduced by independent boarding and alighting processes,
along with driver behaviour, can help decouple successive
trips, which further justifies our independence assumption.

III. PERFORMANCE METRICS

In this section, we provide an analysis of the performance
metrics of the considered mule-based DTN. We focus on
two key performance metrics critical to DTNs: (i) the down-
link/uplink data transmission rates and (ii) the Peak Age
of Information (PAoI). These metrics provide insight into
the efficiency and timeliness of data delivery, which are
crucial for assessing the feasibility and scalability of mule-
based DTNs. We analyze each of these metrics to determine
the minimum number of informal public transport vehicles
that need to be equipped with DTN capabilities to meet
specific performance requirements. We begin by discussing
the wireless link data rate between DTN-equipped vehicles
and DTN gateways during the contact time. Subsequently,
we analyze the transmitted data package size per-each contact
time and the data transmission rate at each node. Finally, we
analyze the PAoI and derive an analytical approximation for
the Mean Peak Age of Information (MPAoI), which represents
the expected value of PAoI across multiple update cycles.
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A. WIRELESS LINK DATA RATE

This subsection examines the physical layer wireless link data
rate between DTN-equipped vehicles and fixed DTN gateways
during their contact time. As vehicles approach the bus stop,
their radio terminals begin communicating with the fixed DTN
gateway. Although affected by mobility factors with expected
variable link quality, modern wireless technologies offer cov-
erage ranging from a few meters to several hundred meters
[19], [20], [21]. The data rate improves as the vehicle and
gateway move closer, significantly impacting the amount of
data exchanged during the contact time. While characterizing
the transient period during a vehicle’s approach to the gateway
is challenging due to rapidly changing link quality, such
as the signal-to-noise ratios (SNR), most data transmission
occurs when the vehicle stops near the DTN gateway. For
simplicity, we assume a fixed wireless link data rate Rlink
(in Mbps) during the vehicle’s contact time, representing the
peak physical-layer transmission capacity when the vehicle
is stationary. Additionally, we assume symmetrical uplink
and downlink data rates during the contact time. This is a
reasonable assumption, as modern Wi-Fi technologies share
bandwidth between uplink and downlink transmissions using
advanced multiple-access schemes [22].

B. DOWNLINK/UPLINK DATA TRANSMISSION RATE

In DTN systems, communication often involves long delays
and is designed for scenarios where continuous connectivity
cannot be guaranteed. To account for these delays, we consider
the total time a vehicle spends on its journey, including its
contact time with fixed gateways, as part of the data trans-
mission process. Consequently, the data transmission rate in
such networks is defined differently, reflecting the intermittent
nature of data exchanges between nodes. Specifically, data
is transmitted in discrete chunks whenever DTN-equipped
vehicle establishes contact with fixed DTN gateways. We
define the effective data transmission rate, denoted as R, as
the total amount of data transmitted or received (in Mbits)
for uplink or downlink over an observation period. Note that
the transmission is not continuous, and only a portion of the
observed period involves active data exchange. This metric
provides a meaningful representation of network performance,
enabling a direct analysis of the effect of vehicle density on
data transmission rate. To quantify the downlink and uplink
transmission rates for our scenario, we leverage the established
inter-arrival time of vehicles described in Section II-C3. First,
we calculate the average transmitted data size for each vehicle
v, denoted as mv , during the contact time for both uplink and
downlink.

Lemma 1 (Mean Transmitted Data Size). The data size for
uplink/downlink is proportional to the time needed to pick up
the data package from region A (or B) and deliver it to region
B (or A). Thus, the transmitted data size for the v-th vehicle
during contact time is given by:

mv = Rlink ·min{Tc,A, Tc,B} (6)

where the complementary cumulative distribution function
(CCDF) of the data size is:

Fm(m) =

(
c2 −m/Rlink

c2 − c1

)2

, m ∈ [c1Rlink, c2Rlink] (7)

where c1 and c2 are the minimum and maximum contact times
at the bus stops, respectively, as defined in Section II-C1. The
mean transmitted data size for uplink/downlink is:

E[mv] = Rlink ·
(
2c1 + c2

3

)
(8)

Proof: See Appendix -A. ■

Given the known inter-arrival time of the aggregated vehicles,
the mean effective data transmission rate can be expressed as:

Lemma 2 (Mean Data Transmission Rate). For the mean data
size per vehicle arrival, E[mv], and vehicles arrival rate, λs,
the mean data transmission rate, denoted as E[R], is given
by:

E[R] = E[mv]λs = E[mv] ·
n

µ
, (9)

This result shows that the mean data transmission rate
is linearly proportional to the number of vehicles. This is
consistent with Equation (4), where the rate of vehicle arrivals
is also linearly proportional to the number of vehicles.

C. PEAK AGE OF INFORMATION

The concept of Age of Information (AoI) was introduced to
quantify the freshness of knowledge about a process observed
from a distance [23]. In other words, AoI measures the time
elapsed since the last status update received from a source
was generated. For clarity, assume a stochastic process Y (t)
is observed by a source node at the village, where samples
of the process are extracted as time evolves. This process
could represent the state of IoT devices, the status of a web-
caching server, or any other service providing updates from
the village. These samples, along with their timestamps ti,
are transmitted to a monitor node at the city network via
DTN-equipped vehicles. The timestamp allows the monitor
to track the freshness of the received samples. For example,
if a sensor reading was created at time tg and arrives at the
monitor at time tr, the AoI at the moment of reception is
tr − tg . After the update is received, the AoI grows linearly
over time until a new update arrives and resets the age. Unlike
traditional delay metrics that measure how long it takes for
a packet to travel from source to destination, AoI captures
how timely the available information is, accounting for both
delivery delay and the frequency of updates. This makes it
especially relevant in DTN scenarios where updates may arrive
sporadically due to intermittent connectivity. Lower AoI values
indicate fresher information, which is important in applications
with strict delay requirements. AoI can be mathematically
defined as follows:

Definition 1 (Age of Information). Consider a communication
system comprising a source that generates data updates and
a monitor that receives these updates. Let tl denote the
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generation time of the l-th update at the source, and let t′l
denote the reception time of the l-th update at the monitor. At
any time t, let u(t) represent the generation timestamp of the
most recent update received by the monitor. Specifically, if the
monitor has received updates up to the ϑ-th update by time
t, then u(t) = tϑ, where ϑ = max{l : t′l ≤ t}. The Age of
Information (AoI) at time t, denoted as A(t), is defined as the
time elapsed since the generation of the most recently received
update:

A(t) = t− u(t). (10)

The AoI quantifies the freshness of information available at
the monitor. When a new update is received at time t′l, the
AoI instantaneously drops to A(t′l) = t′l− tl, which represents
the end-to-end delay of that update. Between consecutive
update arrivals, the AoI increases linearly with time, creating
a sawtooth pattern.

Another key metric of interest is the Peak Age of Informa-
tion (PAoI), which describes the maximum AoI observed just
before the arrival of a new update. PAoI can be considered
as the upper bound of the AoI (worst-case data freshness)
and is considered as the metric to measure the freshness of
information in systems, as it typically provides more tractable
solutions. Formally, PAoI is defined as:

Definition 2 (Peak Age of Information). Following the defi-
nition of AoI in 1, the PAoI when receiving the l-th update is
given by:

PAoI[l] = t
′

l − tl−1, (11)

where t
′

l is the time the l-th update is received and tl−1 is the
generation time of the previous update.

Based on Definitions 1 and 2, a sample realization of the
AoI in a system with two DTN-equipped vehicles operating
between two regions illustrating the PAoI peaks (A1, A2, ...)
from the perspective of a monitor node at the city receiving
updates from the village is shown in Fig. 2. At any time t,
the AoI grows linearly until a fresh update is delivered to the
monitor node, where PAoI occurs.

Fig. 2: A sample realization of AoI and PAoI for a system with
two DTN-equipped vehicles. The peaks A1, A2, . . . correspond
to the PAoI values.

To analyze the PAoI in our considered scenario, the follow-
ing assumptions are made for the system under consideration.

First, each DTN terminal (at the city, village, and mules) has
sufficiently large buffers, ensuring no packet loss due to buffer
overflow. This assumption is motivated by the availability of
high-capacity and low-cost storage units. Second, the contact
time during a vehicle’s stop at a node is long enough to allow
the transmission of a complete update packet. This ensures
that the updates are appropriately sized to fit within the contact
time. For a concrete example, we refer to Fig. 2 and consider
observing the system starting at t = T1, with vehicle 1 at
region B and vehicle 2 arriving later at t = T1 + T2. Here,
T1 and T2 are arbitrary initial times and do not affect the
system’s average performance. Vehicle 1 returns to region A
after collecting data from region B at t = T1+Tc,B+TBA. At
this point, the AoI reaches Tc,B +TBA. The AoI continues to
grow until either vehicle 1 completes a round trip or vehicle
2 delivers a fresher update. In Fig. 2, vehicle 2 arrives first,
and the first PAoI is A1 = T2 + Tc,B + TBA. The AoI then
drops to Tc,B + TBA and resumes its linear growth until the
next update arrives.

In general, obtaining a closed-form expression for the PAoI
is challenging due to the inherent randomness of vehicle trip
durations and the possibility that a vehicle may carry outdated
updates if another vehicle delivers fresher data earlier. To
make the analysis tractable, we assume that vehicles complete
their trips sequentially, which aligns with typical operational
patterns in informal public transport and is supported by the
relatively long waiting times observed at main bus stops.
Under this assumption, we leverage the results derived for the
inter-arrival time in a system with n DTN-equipped vehicles
and observe that the PAoI depends primarily on three factors:
the contact time at the rural bus stop (Tc,B), the travel time
required for the data package to move between the rural
village and the city (TBA), and the difference in arrival
times between two consecutive DTN-equipped vehicles, which
follows the inter-arrival time distribution of the superimposed
renewal process (Ts). Accordingly, the PAoI can be approx-
imated as PAoI ≈ Tc,B + TBA + Ts. Additionally, the
Mean PAoI (MPAoI), denoted as E[PAoI], is expressed as
E[Tc,B + TBA + Ts]. We verify how close this approximation
is to the actual quantity in the simulation section. Moreover,
as the number of vehicles increases, the MPAoI is expected to
decrease and approach Tc,B + TBA. Specifically, when the
mean inter-arrival time of vehicles is reduced, the MPAoI
follows. Thus, the MPAoI can be approximated as:

MPAoI ≈ E[Tc,B + TBA] +
µ

n
, (12)

This relationship highlights the effect of deploying more DTN
mule nodes at vehicles to minimize the system’s AoI (and
PAoI).

D. DATA TRAFFIC REQUIREMENTS

In mule-based DTN systems, the amount of data exchanged
between nodes primarily depends on the contact time during
vehicle stops. Estimating the data traffic generated by users
at the village is critical to optimizing system components,
including storage capacities and wireless access points. DTN
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systems prioritize reliability over latency, favouring non-real-
time applications such as email [24], web-caching [25], asyn-
chronous messaging [26], and asynchronous digital learning
platforms [5]. Additionally, DTNs can support IoT applica-
tions and collect sensor data from remote areas [15], [16],
[17], [27], where cost-effectiveness and scalability play a vital
role for resource-constrained IoT ecosystems. As discussed,
DTN systems are most effective when the data traffic does
not depend on an immediate response. Suitable IoT examples
include batch collection of sensor readings for agriculture,
wildlife tracking, and long-term environmental monitoring.
For these use cases, periodic uploads and opportunistic data
transfer are sufficient. On the other hand, applications that
require real-time communication or immediate action, such as
critical alerts or industrial controls, fall outside the range of
services supported by the mule-based DTN designs.

The total data traffic generated at the village depends on
the user density, denoted as u, and the traffic demand per user,
denoted as d in Mbits/day. Typical estimates suggest that email
and asynchronous chat applications generate 10–50 Mbits/day
per user, while digital learning platforms may produce hun-
dreds of Mbits/day [28]. Multimedia content requests (e.g.,
video streaming) generate significantly higher traffic, between
300–700 Mbits/hour, with general web browsing consuming
around 50 Mbits/hour [29], [30]. Based on these estimates,
the daily data demand per user could reach approximately
1 Gbits/day, though this depends on specific DTN applications
and user activity levels. To meet the data traffic demands
of a village, the total daily traffic, denoted as Dday, can be
calculated as:

Dday = u · d (Mbits/day). (13)

From this, the required number of vehicles to be equipped
with DTN can be estimated, considering their capacity and
frequency of travel. This calculation informs decisions regard-
ing the deployment and configuration of DTN infrastructure,
ensuring sufficient resources for data exchange.

E. COST CONSIDERATIONS

The proposed DTN architecture consists of two types of nodes:
fixed DTN gateways located at urban and rural village bus
stops and mobile DTN nodes (data mules) mounted on public
transport vehicles. A typical DTN node comprises a processing
unit (e.g., a small server or computer), a wireless adapter (e.g.,
Wi-Fi), a storage unit, a power supply with battery backup, and
an enclosure for all components. The cost of each node ranges
from a few hundred to over a thousand dollars depending on
the hardware configuration [9]. In practice, the cost of a DTN
node depends heavily on its hardware configuration. Low-
cost designs based on devices such as Raspberry Pi boards
equipped with Wi-Fi dongles and microSD or SSD storage
can bring the total cost to under a few hundred USD. For
mobile DTN nodes mounted on vehicles, power can be drawn
directly from the vehicle’s electrical system, eliminating the
need for standalone battery systems or solar panels and thereby
reducing both initial costs and maintenance requirements. This
vehicle-powered approach is particularly practical since the

nodes only need to operate during vehicle contact times.
On the other hand, fixed DTN gateways at rural locations
without reliable grid power may require solar panels with
battery backup to ensure continuous operation. Additionally,
integrated systems with rugged enclosures, onboard batteries
or solar panels, and pre-installed software stacks may raise
the cost of the DTN terminals. Our framework is flexible and
supports a wide range of cost parameters to accommodate
this variability. While connecting the urban DTN gateway to
the Internet incurs additional expenses, most costs are one-
time investments amortized over the network’s operational
lifespan. In this DTN system, the primary variable cost is
associated with deploying the mobile DTN nodes. To minimize
these costs, we aim to determine the minimum number of
mobile DTN nodes required to meet specific communication
performance metrics. Assuming the cost of a single DTN node
placed on vehicles is denoted as C, and for the fixed DTN
gateways denoted as Cgateway, the total deployment cost can
be formulated as an optimization problem while meeting QoS
requirements, including MPAoI and mean data transmission
rate. The problem is formulated as follows:

min
n

n · C + 2 · Cgateway, (14)

s.t. E[Tc,B + TBA] +
µ

n
≤ E[PAoI]thr, (15)

E[mv] ·
n

µ
≥ E[R]thr, (16)

where E[PAoI]thr is the threshold for the MPAoI, and E[R]thr
is the required average data transmission rate. The constraints
in Equations (15) and (16) are to satisfy the QoS require-
ments presented by the MPAoI and mean data transmission
rate, respectively. The optimal solution for the optimization
problem with objective function in Equation (14) and con-
straints in Equations (15) and (16) is straightforward. Let
α = µ

E[PAoI]thr−E[Tc,B+TBA] and β = E[R]thr·µ
E[mv ]

. The minimum
number of mobile DTN nodes required to satisfy both con-
straints at the same time minimizes the total cost is:

nopt = ⌈max{α, β}⌉ . (17)

This formulation provides a cost-effective approach to de-
ploying a DTN system while ensuring that communication
performance metrics are met.

IV. NUMERICAL RESULTS

In this section, we validate the investigated framework through
numerical simulations. We first present results under various
system parameters and demonstrate how closely the proposed
MPAoI approximation aligns with simulation outcomes. Ad-
ditionally, we utilize datasets from informal public transport
systems in Nouakchott, Accra, and Addis Ababa, to evaluate
system constraints in realistic scenarios.

To validate the MPAoI approximation derived in Equa-
tion (12), we developed a simulation framework based on
the probabilistic model described in Section II-C. The main
simulation parameters are summarized in Table II, where we
used the same waiting time parameters (c1 and c2) for regions
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TABLE II: Simulation Parameters

Parameter Value

c1 3 minutes
c2 5 minutes
Tmin 100 minutes
T d 20 minutes
Rlink 10 Mbps

A and B, and the same minimum delay parameter (Tmin)
for both TAB and TBA. The framework simulates discrete-
time events over a maximum simulation duration of 105 time
units, with each unit representing one minute. This is to ensure
steady-state metrics of the considered scenario. The mobility
of DTN-equipped vehicles in our simulations is modeled
using the probabilistic framework described in Section II-C,
where round-trip durations are composed of random contact
times (modeled as uniform distributions) and travel times
(modeled as shifted exponential distributions). For validation,
we incorporate real-world trace data from [14] to extract
travel time statistics and compare performance across different
urban-rural scenarios. We calculate and plot the Mean AoI
(MAoI), the MPAoI, and the approximated MPAoI (labeled
‘MPAoI Approx.’ in the figure), based on Equation (12). The
results are shown in Fig. 3. For a network with DTN-equipped
vehicles ranging from 1 to 20, the maximum approximation
error for the proposed MPAoI calculation is observed to
be 4.66 minutes, demonstrating high accuracy for practical
applications. The maximum approximation error represents
the largest observed difference between the analytical approx-
imation in Equation (12) and the simulation-based MPAoI
across all vehicle configurations tested (1 to 20 vehicles).
Additionally, in a network with a single DTN-equipped data
mule, the MPAoI is approximately 375 minutes. However, as
the number of data mules increases to 20, the MPAoI decreases
to around 150 minutes. This substantial reduction shows the
effectiveness of deploying additional DTN-equipped vehicles
in improving data freshness and overall network efficiency. It
can be also noted from Fig. 3 that, as the number of data mules
increases, the MPAoI approaches its theoretical minimum (red
dashed line in Fig. 3), which corresponds to the average time
required for a vehicle to complete a one-way trip from the
village to the city, Toneway , i.e., the age of the data package
just as it arrives at the monitor at the city while generated
Toneway minutes before at the village.

Fig. 4 illustrates the impact of round-trip times on the
mean data transmission rate and MPAoI. In this analysis,
the mean minimum contact time at each bus stop is set
to 10 minutes, and the wireless link data rate is assumed
to be 10 Mbps. While modern Wi-Fi standards such as
IEEE 802.11n/ac/ax can support data rates exceeding 600
Mbps [31], we conservatively assume a fixed average rate
of 10 Mbps during the vehicle’s contact time with DTN
gateways. This reflects a more realistic data rate achievable in
rural deployments where interference, energy limitations, and
hardware constraints may affect link quality. The assumption
accounts for average performance during the stationary phase
of the vehicle’s stop, when most data transmission occurs,
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Fig. 3: MAoI, MPAoI, and MPAoI approximation as described
in Equation (12). The simulation was averaged over 105 time
units. The maximum approximation error represents the largest
observed difference between the analytical approximation in
Equation (12) and the simulation-based MPAoI across all
vehicle configurations tested (1 to 20 vehicles). The red dashed
line represents the average time required for a vehicle to
complete a one-way trip from the village to the city (Toneway).

and serves as a practical baseline for performance evaluation.
Importantly, the analytical framework and simulation results
remain valid for other data rate values, allowing adaptation to
more bandwidth-constrained or unreliable rural environments.
Based on Equation (8), the mean data package size per vehicle
arrival is around 6 GB. From the figure, we observe that
the transmission rate decreases exponentially as the mean
round-trip time increases, consistent with the earlier analysis.
Simultaneously, the MPAoI grows linearly with the round-trip
time. Furthermore, as the number of DTN-equipped data mules
increases, both the transmission rate and the MPAoI show
significant improvement. For instance, in a network with a
single DTN-equipped data mule and a mean round-trip time
of 120 minutes, the transmission rate is approximately 2 Mbps,
while the MPAoI is approximately 200 minutes. However, with
20 DTN-equipped data mules in the network, the transmission
rate increases to around 20 Mbps, and the MPAoI drops to
approximately 75 minutes. These results highlight that adding
more data mules to the network improves the transmission rate
linearly while reducing the MPAoI.

In Figs. 5 and 6, we utilize a recent dataset collected
for informal public transport systems across 22 countries
globally [14]. The dataset includes mobility traces for several
routes, obtained by equipping vehicles with GPS transceivers
to record the time required to complete their routes. While the
dataset does not specifically provide information on vehicles
starting and ending at bus stops or waiting times at the
beginning and end of routes, it serves as a representative
model of the randomness and delays commonly encountered
in informal public transport systems when traveling between
different locations. For this study, we selected the three longest
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Fig. 4: MPAoI and mean data transmission rate for different
mean round-trip times and DTN-equipped vehicles in the
network.

routes in Nouakchott (capital of Mauritania), Accra (capital
of Ghana), and Addis Ababa (capital of Ethiopia). Although
some of the areas represented in our dataset have access
to other connectivity solutions, we utilized this dataset as
a means to demonstrate the effectiveness of our mule-based
DTN framework for potentially bringing connectivity to rural
areas. We used the same contact time limits as listed in
Table II, while the travel time statistics were derived from
the dataset and the wireless link data rate is set to 20 Mbps.

Fig. 5(a) shows the results of our proposed framework
applied to the route connecting Nouakchott University and
Bamako Crossroads. This route spans approximately 25 km
and, under optimal conditions, takes around 30 minutes to
complete a one-way trip. However, based on the dataset,
informal transport vehicles take an average of 59 minutes to
complete the one-way journey, accounting for random delays
caused by various factors as analyzed earlier. The figure also
illustrates the expected data transmission rate and MPAoI
based on our framework. For a network with a single DTN
data mule, the data transmission rate is around 1 Mbps, while
it increases to approximately 12.5 Mbps with 20 data mules.
Similarly, the MPAoI for one data mule is approximately 180
minutes, which decreases to around 65 minutes when 20 data
mules are introduced into the network. These results highlight
the interplay between the number of DTN data mules in the
network and the resulting performance.

A similar analysis is conducted for the route between
Dodowa and Accra Central in Accra, as shown in Fig. 5(b).
This route is approximately 56 km long and requires around 55
minutes for a one-way trip under optimal conditions. However,
based on the dataset, vehicles take an average of 104 minutes
due to random delays. Because this route is longer, the network
performance is slightly lower compared to the shorter route
in Nouakchott when using the same number of vehicles. For
instance, with one DTN data mule, the transmission rate
is less than 1 Mbps, and the MPAoI is approximately 350
minutes. With 20 DTN data mules, the data transmission rate
improves to around 7 Mbps, while the MPAoI decreases to

approximately 120 minutes.

Nouakchott University
Bamako Crossroads

• Distance : ~ 25 km.
: ~ 59 min.

(a)

Dodowa
Accra Central 

• Distance : ~ 56km.
: ~ 104 min.

(b)

Fig. 5: Network performance metrics (Transmission Rate and
MPAoI) for the routes (a) between Nouakchott University
and Bamako Crossroads, and (b) Dodowa and Accra Central,
considering varying numbers of DTN data mules.

Finally, we consider a scenario involving a central hub
connecting multiple routes in Addis Ababa. This represents
a central bus stop, Shero Meda, serving as a hub for routes
of varying lengths and travel durations. The hub connects
routes to Tulu Dimtu (Route 1: 123 minutes), Mexico (Route
2: 73 minutes), Bole Millennium (Route 3: 61 minutes), Abo
Junction (Route 4: 55 minutes), and Autobis Tera (Route 5:
26 minutes), with the average one-way trip durations provided
in parentheses. This can be modeled as a star-shaped DTN
where the gateway at Shero Meda serves multiple rural areas
simultaneously. The performance metrics for this setup are
shown in Fig. 6. For the route with the longest travel time (Tulu
Dimtu), the data transmission rate is less than 1 Mbps with
a single DTN data mule, increasing to approximately 8 Mbps
with 20 data mules. Similarly, the MPAoI decreases from
380 minutes with one data mule to around 150 minutes with
20 data mules. For shorter routes, consistent improvements in
both transmission rate and MPAoI are observed as the number
of data mules increases.
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Shero Meda

Fig. 6: Performance evaluation of a star-shaped DTN with
a central hub at Shero Meda, connecting multiple routes in
Addis Ababa with varying travel durations. The figure shows
the impact of the number of DTN data mules on the data
transmission rate and MPAoI for different routes, highlighting
the interplay between network performance and route length.

V. CONCLUSION

This paper presented a DTN-based framework leveraging
informal public transport systems to address the persistent
digital divide in rural areas. This framework offers a cost-
effective and scalable solution for enabling intermittent data
exchange between urban regions with Internet access and
rural regions without connectivity. A probabilistic model was
developed to characterize the movement of data mules, incor-
porating realistic travel and contact time distributions. Key
performance metrics, including data transmission rates and
Mean Peak Age of Information (MPAoI), were analyzed, and
a mathematical approximation for the MPAoI was derived
and validated through numerical simulations. The framework
was further tested using real-world datasets from Nouakchott,
Accra, and Addis Ababa, demonstrating its applicability in
diverse settings. The results quantify how the number of DTN-
equipped vehicles and the route length influence achievable
data transmission rates and data freshness, showing that addi-
tional data mules can improve performance even in resource-
constrained settings.

While the investigated framework is well-suited for regions
with limited infrastructure, its performance may decrease
when vehicles travel very long distances between rural and
urban areas, resulting in higher round-trip times and increased
MPAoI. To address this limitation, future work could explore
hybrid networking strategies that combine opportunistic DTN
connections with infrastructure-based links, such as satellite
backhaul, to maintain acceptable performance in remote or
geographically isolated regions.
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APPENDIX

A. PROOF OF LEMMA 1

Let X = min(Tc,A, Tc,B), the CDF and PDF of the minimum
of two i.i.d uniformly distributed random variables is:

FX(x) = P (X ≤ x) = 1−
(

c2 − x

c2 − c1

)2

, x ∈ [c1, c2].

fX(x) =
d

dx
FX(x) =

2(c2 − x)

(c2 − c1)2
, x ∈ [c1, c2].

The mean of X can be evaluated as:

E[X] =

∫ c2

c1

xfX(x) dx =
2c1 + c2

3
.

Hence, this completes the proof.
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of informal public transport networks,” Nature Communications, vol. 15,
no. 1, p. 4910, Jun. 2024.

[15] F. Z. Benhamida, D. Casado-Mansilla, C. Bennani, and D. López-de
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